

#### Presentation Abstract

| Abstract<br>Number:     | 4435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentation<br>Title:  | Discovery, biological characterization and oral antitumor activity of polo-like kinase 1 (Plk1) selective small molecule inhibitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Presentation<br>Time:   | Tuesday, Apr 20, 2010, 2:00 PM - 5:00 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Location:               | Exhibit Hall A-C, Poster Section 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Poster<br>Section:      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Poster Board<br>Number: | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Author<br>Block:        | Jonathan J. Hollick, Michael G. Thomas, Claire J. Flynn, Stuart D. Jones, Janice McLachlan, Frederic Scaerou, Amy Emery, Nicola L. Rogers, Abhijeet Choudhary, Graeme Thomson, Simon R. Green, David M. Glover, David G. Blake. Cyclacel Ltd, Dundee, United Kingdom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Abstract<br>Body:       | We have identified novel inhibitors of Polo-like kinase 1 (Plk1) that exhibit strong single agent activity in solid tumor and leukemia xenograft models after oral dosing. Plk1 is a serine / threonine protein kinase thought to regulate cell division through promotion of mitotic entry, control of spindle assembly, orchestration of mitotic progression and initiation of cytokinesis. Plk1 has been reported to phosphorylate and deactivate the tumor suppressors p53, p63 and p73 thereby inhibiting apoptosis. Furthermore this repression of p53 family members may be responsible for the survival and tumorigenesis of liver cancer stem cells. Cancer cell proliferation is blocked <i>in vitro</i> and <i>in vivo</i> by antisense oligonucleotides and siRNAs to Plk1. Overexpression of Plk1 is associated with tumor development and many human cancers express elevated Plk1 levels compared to surrounding normal tissue. Numerous studies have shown that Plk1 expression levels correlate with disease progression, invasiveness and poor patient prognosis. Collectively, these observations support the selection of Plk1 as an attractive target for cell cycle-directed cancer therapy. We have employed high throughput screening, <i>in silico</i> screening and <i>de novo</i> ligand design approaches to select an inhibitor scaffold for lead optimization. We have selected a set of ATP-competitive Plk1 inhibitors that exhibit high selectivity for Plk1 and inhibit growth of a broad range of tumor cell lines <i>in vitro</i> with IC <sub>50</sub> s in the low nanomolar range. Structure-activity relationships (SAR) were determined through iterative target da anlogue synthesis and <i>in vitro</i> outsing with SAR rationalized against x-ray crystallographic data. We observed selectivity of the inhibitor scaffold for Plk1 against a panel of over 200 kinases. Treatment of tumor cells with our Plk1 inhibitors induced a phenotype consistent with inhibition of Plk1, accumulation of cells in mitosis and induction of apoptosis. The extent of cytotoxicity was dependent on proliferation as determined b |

American Association for Cancer Research 615 Chestnut St. 17th Floor Philadelphia, PA 19106



# Abstract #4435



| Mode        | ATP non-<br>competitive                           | ATP<br>competitive                                                | ATP competitive           | ATP competitive                  |  |
|-------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------|----------------------------------|--|
| Selectivity | High                                              | Low                                                               | Moderate                  | High                             |  |
| Observation | Possibly<br>reactive and<br>covalently<br>binding | Plk1 inhib <sup>n</sup><br>secondary to<br>CDK inhib <sup>n</sup> | Poor cellular<br>activity | Sub-micromolar cellular activity |  |

# **Preliminary Scaffold Exploration**

#### General synthetic sequence



### Summary of basic SAR against Plk1

| R group | Modifications                      | Conclusion                                            |
|---------|------------------------------------|-------------------------------------------------------|
| R1      | Alkyl, aryl, benzyl                | Cyclic alkyl preferred; Cyclopentyl optimal           |
| R2      | Alkyl variants                     | H substituent optimal                                 |
| R3      | Alkyl variants                     | Spiropropyl optimal; gem-dimethyl, spirobutyl active  |
| х       | 0, S                               | Carbonyl more potent and soluble                      |
| R4      | H, Me, Et and <sup>i</sup> Pr      | Ме                                                    |
| R5      | OMe, OCF3, OEt, H, Hal, OH,        | OMe optimal; F less selective                         |
| R6      | CO <sub>2</sub> H, OH, OMe, Amides | Secondary amides preferred; Range of amides tolerated |

AACR 101st Annual Meeting, 17-21 April 2010, Washington, DC

# Discovery, biological characterization and oral antitumor activity of polo-like kinase 1 (Plk1) selective small molecule inhibitors

Jonathan J. Hollick, Michael G. Thomas, Claire J. Flynn, Stuart D. Jones, Janice McLachlan, Frederic Scaerou, Amy Emery, Nicola L. Rogers, Abhijeet Choudhary, Graeme Thomson, Simon R. Green, David M. Glover and David G. Blake. Cvclacel Ltd. Dundee. United Kingdom.

## Characterization

Compound 1, a lead-like Plk1 inhibitor, was selected as a representative tool compound from the series for characterization.



#### **Kinase selectivity**

Compound 1 selectivity was tested in 216 kinase panel at 5 µM. IC<sub>50</sub> values were determined against the 8 kinases inhibited by more than 50%. A high degree of selectivity for Plk1 was observed



#### Crystal structure of representative compound



Co-crystallization of compound 1 with Plk1 kinase domain solved to 1.95 Å

- Ligand binds the ATP-binding site and neighboring regions of the active site
- Various hydrophobic interactions (Phe183, Val114, Leu59 & others)
- Forms two specific hydrogen bonds to the hinge region Forms specific hydrogen bond to solvent-front exposed residue

Polar back-pocket interactions bridged by water molecules

The crystal structure rationalized observed potency and selectivity data and identified regions of the inhibitor that project from the pocket.

# Lead Optimization

During lead optimization, physicochemical and ADME properties were tuned through variation in the solvent exposed regions of the inhibitor. Leads were optimized for solubility, cellular activity and pharmacokinetic profiles.<sup>11</sup> Values for selected compounds are given below.

Compounds 2-4 compare favorably with compound 1 and have been further profiled in in vitro, cellular and in vivo studies.

| Devenueter                                   | Route | Dose<br>(mg/kg) | Observation |        |        |        |
|----------------------------------------------|-------|-----------------|-------------|--------|--------|--------|
| Parameter                                    |       |                 | Cmpd 1      | Cmpd 2 | Cmpd 3 | Cmpd 4 |
| DK: T1/ (br)                                 | iv    | 1               | 0.3         | 1.0    | 2.9    | 2.0    |
| PK: 1 ½ (Nr)                                 | oral  | 10              | NT          | 1.1    | 3.9    | 2.6    |
| PK: time with >1 µM                          | oral  | 40              | NT          | 1.5    | NT     | 6.7    |
| exposure (hr)                                |       | 80              | 2.9         | 4.4    | NT     | NT     |
| Caco-2 Papp A-B<br>(x 10 <sup>-6</sup> cm/s) | n/a   | n/a             | 0.91        | 1.4    | 28     | 9.2    |
| Efflux ratio BA/AB                           | n/a   | n/a             | 7.0         | 4.6    | 0.22   | 1.2    |
| hERG IC <sub>50</sub> (µM)                   | n/a   | n/a             | NT          | 21     | 6      | >30    |

NT = not tested; n/a = not applicable

# **Cellular Mechanism of Action**

Treatment of proliferating cells with compounds results in accumulation of cells in mitosis. No effect on *in vitro* tubulin polymerization (with or without microtubule associated proteins) was observed with compound 1



HeLa cells were treated with compound for 24 hrs then fixed and stained with antibodies against  $\alpha$ -tubulin (red) and the centromeric marker CREST (green). DNA was stained with DAPI (blue). Images were acquired by confocal microscopy at 100x.

Compound treatment induced an increase in %age of mitotic cells and the proportion of mitotic cells with monopolar spindles, consistent with Plk1 inhibition. Normal bipolar spindle formation is shown for the DMSO control. Scale bar represents 5 µm.

|                                                                                  | DMSO<br>control | 250 nM Cmpd 1 | 250 nM Cmpd 4 |
|----------------------------------------------------------------------------------|-----------------|---------------|---------------|
| % Mitotic cells<br>(n>250 cells/field)                                           | 2.4%            | 70.6%         | 69.0%         |
| % of mitotic cells with <b>monopolar</b><br><b>spindles</b> (n=50 mitotic cells) | 4%              | 78%           | 74%           |

The mitosis-specific marker S10-phospho-histone H3 (PH3) and S82phospho-vimentin (a cellular target of Plk1) were quantified in HeLa cells by high content immunofluorescence assays

Across the inhibitor series induction of mitosis correlates with intracellular Plk1 inhibition, which in turn correlates with cytotoxicity.

On-target antimitotic activity On-target anti-proliferative activity



Comparison of cell viability in actively proliferating cells and G1 arrested cells indicates a >50-fold window of selectivity for proliferating cells.

Low nM anti-proliferative activity, observed across a broad range of tumor cell lines, is independent of tissue origin, karyotype, spindle checkpoint or tumor suppressor (p53, Rb) and oncogene (Ras) status.

| Call line       | Tumor<br>origin | Ras status | Inhib <sup>n</sup> of proliferation IC <sub>50</sub> (nM) |        |        |        |
|-----------------|-----------------|------------|-----------------------------------------------------------|--------|--------|--------|
| Centine         |                 |            | Cmpd 1                                                    | Cmpd 2 | Cmpd 3 | Cmpd 4 |
| MDA-MB-468      | Breast          | WT         | 5                                                         | 12     | 7      | NT     |
| MCF7            | Breast          | WT         | NT                                                        | 12     | 4      | 8      |
| HeLa            | Cervix          | WT         | 29                                                        | 54     | 3      | NT     |
| HCT116          | Colon           | WT         | 11                                                        | 29     | 23     | NT     |
| HCT116 p53-     | Colon           | Mut        | 12                                                        | 30     | 37     | NT     |
| Colo-205        | Colon           | WT         | 8                                                         | 16     | 8      | 2      |
| HT-29           | Colon           | WT         | 2                                                         | 10     | 3      | NT     |
| HL60            | Leukemia        | Mut        | NT                                                        | 43     | 41     | 55     |
| NCI-H460        | Lung            | Mut        | NT                                                        | 146    | 53     | 32     |
| NCI-H1299       | Lung            | Mut        | NT                                                        | 34     | 11     | 13     |
| A549            | Lung            | Mut        | NT                                                        | 52     | 13     | 9      |
| A2780           | Ovary           | WT         | 25                                                        | 31     | 21     | 7      |
| MIA PaCa-2      | Pancreas        | Mut        | 10                                                        | 19     | 11     | NT     |
| BxPC3           | Pancreas        | WT         | 22                                                        | 49     | 31     | NT     |
| NT = not tested |                 |            |                                                           |        | tested |        |

Petronczki et al. (2008) Dev. Cell 14: 646 Holtrich et al. (1994) Proc. Natl. Acad. Sci. 91: 1736

Kanaji et al. (2006) Oncology 70: 126 Weichert et al. (2006) Cancer Sci. 97: 271

Yamada et al. (2004) Oncogene 23: 5901 Smith et al. (1997) Biochem. Biophys. Res. Commun. 234: 397 Spankuch et al. (2007) Oncogene 26: 5793 Liu et al. (2006) Mol. Cell Biol. 26: 2093

www.cyclacel.com



# In Vivo Antitumor Efficacy

Preliminary xenograft studies demonstrate antitumor efficacy in solid tumor and leukemia models. The lines chosen are of intermediate sensitivity to Plk1 inhibitors based on in vitro cytotoxicity data.

#### Compound 2 – HCT116 colon carcinoma xenograft



Compound 2 demonstrated strong efficacy (6% T/C) after twice-daily oral dosing of 100 mg/kg.

Reduced activity from once-daily oral or iv dosing directed further lead optimization towards improved PK (see Cmpd 3 & 4).

Increased exposure time is predicted to translate to higher in vivo dosepotency







Cmpd 3 exhibits greater dose-potency, with once-daily dosing leading to significant efficacy in solid tumor and leukemia models at 40 mg/kg. including 4/10 complete regressions (CR), with these mice remaining tumor-free to end of study

#### Compound 4 – HL60 promyelocytic leukemia xenograft



Cmpd 4 has an improved in vitro ADMET profile, is better tolerated and exceeds the efficacy of Cmpd 3.

Cures of all mice are observed at doses above 40 mg/kg



The strong preliminary antitumor activity of these compounds justifies continued evaluation and optimization of dose and schedule.

# Summary

- Potent and highly selective inhibitors of the mitotic kinase Plk1 have been identified
- Compounds are highly active in preclinical xenograft models of human cancers upon repeated oral or intravenous treatments and across multiple dose levels
- Structure-rationalized drug design has been employed and lead optimization has delivered drug-like compounds with high oral bioavailability
- Intracellular biomarkers tracking inhibition of Plk1 specific events and general mitosis markers along with mitotic phenotype analysis have been used to ensure on-target mechanism of action